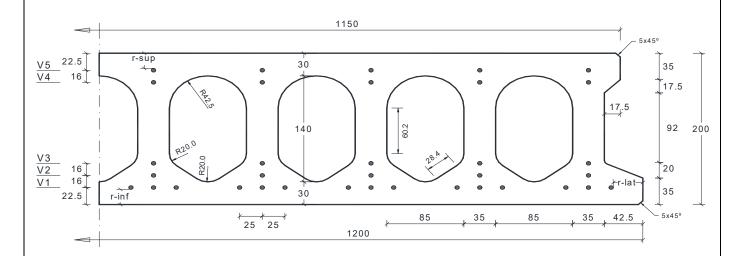
FABRICANTE

Nombre: PREFABRICADOS ARCON, S.L.

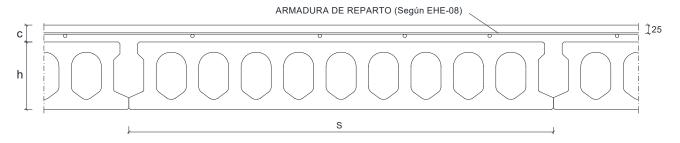
Dirección: CTRA. DE LA GRANJA DE LA COSTERA S/N

Localidad: 46800 XÀTIVA (Valencia)

TÉCNICO AUTOR DE LA MEMORIA Nombre: Sergio Monerris Muñoz Titulación: Ingeniero Técnico Industrial


Hoja 1 de 7

1. PLACA (cotas en mm)


Recubrimientos (mm)

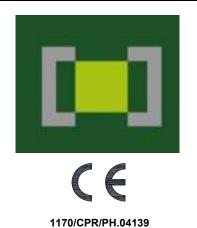
r-lat 32,5 r-inf 20,0 r-sup 20,0

Peso: 3,30 kN/m

2. FORJADO

TIPO DE FORJADO (h+c) * s	PESO (kN/m²)
(20 + 0) * 120	2,98
(20 + 5) * 120	4,18
(20 + 8) * 120	4,90
(20+10) * 120	5,38

FABRICANTE


Nombre: PREFABRICADOS ARCON, S.L.

Dirección: CTRA. DE LA GRANJA DE LA COSTERA S/N

Localidad: 46800 XÀTIVA (Valencia)

TÉCNICO AUTOR DE LA MEMORIA Nombre: Sergio Monerris Muñoz Titulación: Ingeniero Técnico Industrial

Hoja 2 de 7

3. MATERIALES

HORMIGÓN DE PLACA HP-40/P/12/IIa Resist. Comp. proyecto fck = 40 N/mm² Coef. seguridad γ_c = 1,50 HORMIGÓN VERTIDO EN OBRA Resist. Comp. proyecto fck = 25 N/mm² HA-25/B/16/IIa Coef. seguridad γ_c = 1,50 ACERO DE PRETENSAR Y 1860 C I1 Limite elástico f_{pk} = 1667 N/mm² Coef. seguridad $\gamma_s = 1,15$ ACERO REFUERZO SUPERIOR Limite elástico f_{yk} = 500 N/mm² B500S Coef. seguridad $\gamma_s = 1,15$

NOTA: Tipificación de materiales empleados, según EHE-08. Los espesores totales de recubrimiento exigidos en la EHE-08 (art.37.2.4) se podrán completar con el espesor de los revestimientos del forjado que sean compactos e impermeables y tengan carácter definitivo y permanente.

4. ARMADO DE LA PLACA

TIPO DE I	PLACA	P-1	P-2	P-3	P-4	P-5	P-6	P-7
	V1	20φ4	24φ4	20φ5	24φ5	30φ5	30φ5	30φ5
SITUACIÓN DE	V2	-	-	-	-	-	6φ5	10φ5
LAS ARMADURAS	V3	-	-	-	-	-	-	-
ARMADURAS	V4	4φ4	4φ4	4φ5	4φ5	4φ5	-	-
	V5	-	-	-	-	-	6φ5	6φ5
TENSIÓN	Inferior	1324	1324	1324	1324	1324	1324	1324
INICIAL (N/mm²)	Superior	1324	1324	1324	1324	1324	1324	1324
(%) PÉRDIDAS TOTALES A PLAZO INFINITO	c.d.g.	13	14	15	17	18	19	19
TIPO DE	LOSA	P-8						
	V1	30φ5						
SITUACIÓN DE	V2	10φ5						
LAS ARMADURAS	V3	6φ5						
ARIVIADURAS	V4	-						
	V5	8φ5						
TENSIÓN	Inferior	1324						
INICIAL (N/mm²)	Superior	1324						
(%) PÉRDIDAS TOTALES A PLAZO INFINITO	c.d.g.	20						

FABRICANTE

Nombre: PREFABRICADOS ARCON, S.L.

Dirección: CTRA. DE LA GRANJA DE LA COSTERA S/N

Localidad: 46800 XÀTIVA (Valencia)

TÉCNICO AUTOR DE LA MEMORIA Nombre: Sergio Monerris Muñoz Titulación: Ingeniero Técnico Industrial

Hoja 3 de 7

6. CARACTERÍSTICAS MECÁNICAS DE LA PLACA AISLADA

) DE JETA	Módulo resistente Wlinf (mm³) Rigidez bruta (m²·kN) E·lb	P·e (N·mm)	Tensión debida al pretensado (N/mm²)		máximo	solicitación s durante ución	M _{u2} (mkN)	M _{u1} (mkN)	Vu (kN)	
TIPC	W _{linf} (mm ³)	` ,	(14-111111)	(N/m	·	M ₂	M ₁	(IIIKIN)	(IIIKIN)	(KIN)
				$\sigma_{\text{p,inf}}$	$\sigma_{\text{p,sup}}$	(mkN)	(mkN)			
P-1	6973772	20843	17,77	5,09	0,18	35,48	23,49	63,23	17,64	107,02
P-2	7016974	20920	21,73	6,03	0,39	42,28	25,98	75,07	18,01	110,20
P-3	7096992	21090	26,71	7,63	0,20	54,12	26,42	96,38	23,63	117,66
P-4	7163577	21208	32,42	8,96	0,49	64,17	27,76	114,13	23,88	122,27
P-5	7264421	21384	40,50	10,83	0,88	78,64	27,82	139,97	24,12	128,88
P-6	7353123	22341	37,00	10,65	-0,07	78,32	29,80	160,28	36,52	132,20
P-7	7398712	22413	40,97	11,71	-0,03	86,61	30,07	171,78	37,45	136,28
P-8	7439706	22469	40,93	12,57	-0,93	93,49	35,81	185,20	49,85	142,04

 $Valor \ V_u \ para \ la \ placa \ aislada \ calculado \ según \ apartado \ 44.2.3.2.1.1. \ de \ la \ Instrucción \ EHE-08$

Los momentos y cortantes de las cargas mayoradas con los coeficientes empleados (para cargas permanentes y sobrecargas) deben ser mayores que los valores últimos.

NOTA: (1) a 28 DÍAS. Para otra edad se multiplicará por el factor:

Edad	7 días	14 días	21 días	28 días	3 meses	6 meses	1 año	> 5 años
Rigidez	0,83	0,89	0,91	1,00	1,06	1,13	1,16	1,20
M _{fisuración}	0,78	0,86	0,96	1,00	1,10	1,17	1,22	1,27

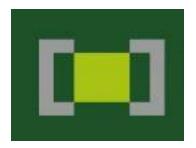
La Dirección Facultativa, deberá prever el adecuado revestimiento inferior del forjado para los distintos ambientes a los que esté expuesta la obra.

7. RESISTENCIA AL FUEGO

La resistencia al fuego se ha determinado de acuerdo al Anejo 6 de la EHE-08. Determinando la distancia equivalente al eje a_m y considerando el coeficiente de seguridad $\mu_{\rm fl}$ =0,5 de acuerdo con el punto 5.1 y la tabla A.6.5.1 obtenemos los siguientes valores de resistencia al fuego en función del tipo de placa:

	TIPO	P-1	P-2	P-3	P-4	P-5	P-6	P-7	P-8
ſ	REI	30	30	30	30	30	30	30	60

FABRICANTE


Nombre: PREFABRICADOS ARCON, S.L.

Dirección: CTRA. DE LA GRANJA DE LA COSTERA S/N

Localidad: 46800 XÀTIVA (Valencia)

TÉCNICO AUTOR DE LA MEMORIA Nombre: Sergio Monerris Muñoz Titulación: Ingeniero Técnico Industrial

Hoja 4 de 7

FLEXIÓN POSITIVA (por m)

TIPO DE FORJADO			β***	Módulo resistente W _{linf}	Rigidez (m²·MN/m)	M lími	te según cl (m·kN	ase de exp /m) (1)	Vu (kN/m)	Rasante (kN/m)	
		,		(cm ³ /m)	El _b	El _{fis}	M _o	M _o ′	M_{fis}	M _{0,2}	(2)	, ,
(20+0)*120	T-1 T-2 T-3 T-4 T-5 T-6 T-7	55,14 64,95 82,22 96,13 115,85 128,21 137,77 145,53	1,04	9534 9597 9714 9813 9961 10092 10159 10220	18,05 18,13 18,29 18,40 18,57 18,78 18,85 18,90	13,24 13,34 13,54 13,69 13,92 14,15 14,25 14,33	27,57 32,48 41,11 48,06 57,93 64,10 68,89 72,77	41,35 48,71 61,66 72,10 86,89 96,16 103,33 109,15	46,87 55,21 69,89 81,71 98,47 108,98 117,11 123,70	49,63 58,46 74,00 86,52 104,27 115,39 124,00 130,98	68,17 71,20 78,45 82,87 89,23 92,09 97,52 107,21	169,97

FLEXIÓN NEGATIVA (por m)

· == (ps)												
Defuerze auperier	M _u (m	·kN/m)	M_{fis}	Rigidez (m²·kN/m)	M lír	nite servicio	según cla	se de	V _u (kN	/m) (2)	Rasante
Refuerzo superior por nervio	Sección	Sección	(m·kN/m)	Bruta	fisurada		exposiciór	n (m·kN/m))	Sección	Sección	(kN/m)
po	Tipo	Macizada	(111 10 0/11)	E·I _b	$E \cdot I_{fis}$	I	II	III-IV	IIIc	Tipo	Macizada	
4Ø10	18,64	18,70	15,13	18,38	2,18	9,32	13,98	15,85	16,78	20,54	34,89	
4Ø12	26,55	26,66	15,41	18,72	3,14	13,28	19,92	22,57	23,90	23,20	39,41	
6Ø10	27,77	27,91	15,44	18,76	3,27	13,89	20,83	23,61	25,00	23,51	39,94	
8Ø10	36,75	37,03	15,75	19,14	4,36	18,37	27,56	31,24	33,07	25,88	43,96	
6Ø12	39,40	39,70	15,86	19,26	4,72	19,70	29,55	33,49	35,46	26,56	45,11	
4Ø16	45,88	46,27	16,10	19,56	5,59	22,94	34,41	39,00	41,29	28,10	47,73	
8Ø12	52,12	52,56	16,30	19,81	6,29	26,06	39,09	44,31	46,91	29,23	49,65	169,97
10Ø12	64,54	65,22	16,75	20,35	7,86	32,27	48,41	54,86	58,09	31,49	53,48	109,91
6Ø16	67,62	68,50	16,90	20,53	8,38	33,81	50,71	57,48	60,86	32,17	54,64	
8Ø16	88,56	90,12	17,70	21,50	11,18	44,28	66,42	75,27	79,70	35,41	60,14	
10Ø16	108,88	111,13	18,50	22,47	13,97	54,44	81,66	92,54	97,99	38,14	64,78	
8Ø20	131,14	134,78	19,50	23,69	17,47	65,57	98,36	111,47	118,03	41,09	69,79	
10Ø20	158,81	164,77	20,75	25,20	21,84	79,40	119,11	134,99	142,93	44,26	75,18	

Los momentos y cortantes de las cargas mayoradas con los coeficientes empleados (para cargas permanentes y sobrecargas) deben ser mayores que los valores últimos.

NOTA: (1) Según clase de exposición, apertura máxima de fisura: WkI = 0,2 mm WkIIa = 0,2' mm WkIII y IV = descompresión

 $\ensuremath{\text{M}_{\!\text{o}}}\xspace$ momento de descompresión de la fibra inferior de la sección,

 M_0 ' momento que produce tensión nula en la fibra de la sección situada a la profundidad de la armadura inferior.

 $\ensuremath{M_{\text{fis}}}\xspace$ momento de apertura de fisura en la fibra más traccionada de la sección.

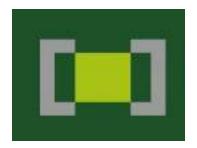
 ${\rm M}_{\rm 0,2}$ momento para el que se produce fisura de ancho 0,2 mm.

- (2) Valor Vu calculado según el criterio establecido en el apartado 44.2.3.2.1.2 de la instrucción EHE-08
- (3) a 28 DÍAS. Para otra edad se multiplicará por el factor:

Edad	7 días	14 días	21 días	28 días	3 meses	6 meses	1 año	> 5 años
Rigidez	0,83	0,89	0,91	1,00	1,06	1,13	1,16	1,20
Mfisuración	0,78	0,86	0,96	1,00	1,10	1,17	1,22	1,27

^{***} b = (lb)forjado / (lb)placa

FABRICANTE


Nombre: PREFABRICADOS ARCON, S.L.

Dirección: CTRA. DE LA GRANJA DE LA COSTERA S/N

Localidad: 46800 XÀTIVA (Valencia)

TÉCNICO AUTOR DE LA MEMORIA Nombre: Sergio Monerris Muñoz Titulación: Ingeniero Técnico Industrial

Hoja 5 de 7

FLEXIÓN POSITIVA (por m)

TIPO DE FORJADO	TIPO DE Mu PLACA (m·kN/m)		β***	Módulo resistente W _{linf}	Rigidez (m²·MN/m)	M lími	te según cl (m·kN	Vu (kN/m)	Rasante (kN/m)		
		, ,		(cm ³ /m)	El _b	El _{fis}	M _o	M _o ′	M_{fis}	$M_{0,2}$	(2)	,
(20+5)*120	T-1 T-2 T-3 T-4 T-5 T-6 T-7 T-8	74,45 87,48 112,40 131,33 158,60 181,02 195,61 213,43	2,08	14000 14090 14249 14390 14599 14762 14868 14987	36,22 36,38 36,67 36,92 37,28 37,59 37,77 37,95	26,70 26,90 27,26 27,57 28,03 28,39 28,62 28,86	37,23 43,74 56,20 65,67 79,30 90,51 97,81 106,72	55,84 65,61 84,30 98,50 118,95 135,76 146,71 160,07	63,29 74,36 95,54 111,63 134,81 153,87 166,27 181,42	67,01 78,74 101,16 118,20 142,74 162,92 176,05 192,09	81,86 85,74 95,03 100,70 108,85 112,52 117,98 128,37	217,85

FLEXIÓN NEGATIVA (por m)

	M(m	·kN/m)		Rigidez (m²·kN/m)		1	nite servicio	según cla	se de	V(kN	/m) (2)	
Refuerzo superior por nervio	Sección	Sección	M _{fis} (m·kN/m)	Dt.	fisurada	IVI IIII		m·kN/m		Sección	Sección	Rasante (kN/m)
•	Tipo	Macizada	(*** **********************************	E·I _b	$E\!\cdot\!I_{fis}$	I	II	III-IV	IIIc	Tipo	Macizada	
4Ø10	24,33	24,39	26,05	36,00	2,76	12,17	18,25	20,68	21,90	23,91	38,69	
4Ø12	34,75	34,86	26,24	36,26	3,98	17,37	26,06	29,54	31,27	27,00	43,70	
6Ø10	36,31	36,44	26,27	36,30	4,14	18,15	27,23	30,86	32,68	27,37	44,29	
8Ø10	48,12	48,41	26,49	36,60	5,52	24,06	36,09	40,91	43,31	30,12	48,75	
6Ø12	51,69	52,00	26,56	36,70	5,97	25,85	38,77	43,94	46,52	30,91	50,03	
4Ø16	60,45	60,84	26,73	36,94	7,07	30,22	45,33	51,38	54,40	32,70	52,93	
8Ø12	68,52	68,95	26,87	37,13	7,96	34,26	51,39	58,24	61,66	34,02	55,06	217,85
10Ø12	85,03	85,70	27,19	37,57	9,95	42,51	63,77	72,28	76,53	36,65	59,31	217,00
6Ø16	89,47	90,34	27,29	37,71	10,61	44,73	67,10	76,05	80,52	37,44	60,59	
8Ø16	117,69	119,25	27,85	38,49	14,15	58,84	88,27	100,03	105,92	41,21	66,69	
10Ø16	145,29	147,54	28,41	39,26	17,68	72,64	108,97	123,49	130,76	44,39	71,84	
8Ø20	176,68	180,31	29,11	40,23	22,11	88,34	132,51	150,18	159,01	47,82	77,40	
10Ø20	215,73	221,69	29,99	41,44	27,64	107,86	161,80	183,37	194,16	51,51	83,38	
1												

Los momentos y cortantes de las cargas mayoradas con los coeficientes empleados (para cargas permanentes y sobrecargas) deben ser mayores que los valores últimos.

NOTA: (1) Según clase de exposición, apertura máxima de fisura: WkI = 0,2 mm WkIIa = 0,2' mm WkIII y IV = descompresión

M₀ momento de descompresión de la fibra inferior de la sección,

 M_0 ' momento que produce tensión nula en la fibra de la sección situada a la profundidad de la armadura inferior.

 $M_{\rm fis}$ momento de apertura de fisura en la fibra más traccionada de la sección.

 ${\rm M}_{\rm 0,2}$ momento para el que se produce fisura de ancho 0,2 mm.

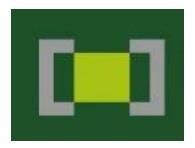
(2) Valor Vu calculado según el criterio establecido en el apartado 44.2.3.2.1.2 de la instrucción EHE-08

(3) a 28 DÍAS. Para otra edad se multiplicará por el factor:

Edad	7 días	14 días	21 días	28 días	3 meses	6 meses	1 año	> 5 años
Rigidez	0,83	0,89	0,91	1,00	1,06	1,13	1,16	1,20
Mfisuración	0,78	0,86	0,96	1,00	1,10	1,17	1,22	1,27

^{***} b = (lb)forjado / (lb)placa

FABRICANTE


Nombre: PREFABRICADOS ARCON, S.L.

Dirección: CTRA. DE LA GRANJA DE LA COSTERA S/N

Localidad: 46800 XÀTIVA (Valencia)

TÉCNICO AUTOR DE LA MEMORIA Nombre: Sergio Monerris Muñoz Titulación: Ingeniero Técnico Industrial

Hoja 6 de 7

FLEXIÓN POSITIVA (por m)

TIPO DE FORJADO	TIPO DE PLACA	Mu (m·kN/m)	β***	Módulo resistente W _{linf}	Rigidez (m²·MN/m)	M lími	te según cl (m·kN	oosición	Vu (kN/m)	Rasante (kN/m)	
1 01 07 12 0	1 27071	(111 10 1711)			El _b	El _{fis}	M _o	M _o ′	M_{fis}	$M_{0,2}$	(2)	(
	T-1 T-2	86,04 101,00		16887 16991	49,88 50,10	37,23 37,50	43,02 50,50	64,53 75,75	73,14 85,85	77,44 90,90	89,88 94,28	
	T-3	130,50		17175	50,50	37,97	65,25	97,88	110,93	117,45	104,79	
(20+8)*120	T-4	152,46	2,87	17338	50,84	38,38	76,23	114,34	129,59	137,21	111,20	246,58
(2010) 120	T-5	184,25	2,0.	17580	51,34	38,99	92,13	138,19	156,62	165,83	120,43	2.0,00
	T-6	212,70		17769	51,75	39,47	106,35	159,53	180,80	191,43	124,59	
	T-7	230,32		17897	52,00	39,78	115,16	172,74	195,77	207,29	130,77	
	T-8	254,17		18047	52,28	40,14	127,09	190,63	216,04	228,75	140,87	

FLEXIÓN NEGATIVA (por m)

T LEXICATIVE (per in)												
Refuerzo superior por nervio	M _u (m	·kN/m)	M_{fis}	Rigidez (m²·kN/m)		M lín	nite servicio	según cla	V _u (kN/m) (2)		Rasante	
	Sección	Sección	(m·kN/m)	Bruta	fisurada		exposiciór	n (m·kN/m)	Sección	Sección	(kN/m)
	Tipo Macizada	(111 10 0/111)	E٠lه	$E\!\cdot\!I_{fis}$	I	II	III-IV	IIIc	Tipo	Macizada		
4Ø10	27,75	27,80	32,58	49,32	3,14	13,87	20,81	23,58	24,97	25,21	40,80	
4Ø12	39,67	39,77	32,75	49,56	4,53	19,83	29,75	33,72	35,70	28,47	46,08	
6Ø10	41,43	41,56	32,77	49,60	4,71	20,71	31,07	35,21	37,28	28,86	46,71	
8Ø10	54,95	55,23	32,95	49,87	6,29	27,48	41,21	46,71	49,46	31,76	51,41	
6Ø12	59,07	59,37	33,01	49,96	6,79	29,54	44,30	50,21	53,16	32,59	52,75	
4Ø16	69,18	69,57	33,15	50,18	8,05	34,59	51,89	58,81	62,27	34,49	55,82	
8Ø12	78,35	78,78	33,27	50,36	9,06	39,18	58,76	66,60	70,52	35,87	58,06	246,58
10Ø12	97,32	98,00	33,53	50,76	11,32	48,66	72,99	82,72	87,59	38,64	62,55	240,30
6Ø16	102,58	103,45	33,62	50,89	12,07	51,29	76,93	87,19	92,32	39,48	63,90	
8Ø16	135,17	136,72	34,09	51,60	16,09	67,58	101,37	114,89	121,65	43,45	70,33	
10Ø16	167,14	169,39	34,56	52,30	20,12	83,57	125,35	142,07	150,42	46,81	75,76	
8Ø20	204,00	207,64	35,14	53,19	25,16	102,00	153,00	173,40	183,60	50,43	81,62	
10Ø20	249,88	255,84	35,87	54,30	31,45	124,94	187,41	212,40	224,89	54,32	87,92	

Los momentos y cortantes de las cargas mayoradas con los coeficientes empleados (para cargas permanentes y sobrecargas) deben ser mayores que los valores últimos.

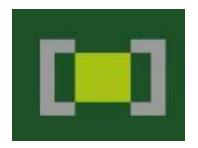
NOTA: (1) Según clase de exposición, apertura máxima de fisura: Wkl = 0,2 mm Wklla = 0,2 mm Wklla y IV = descompresión

- M₀ momento de descompresión de la fibra inferior de la sección,
- M_0 ' momento que produce tensión nula en la fibra de la sección situada a la profundidad de la armadura inferior.
- $\ensuremath{M_{\text{fis}}}\xspace$ momento de apertura de fisura en la fibra más traccionada de la sección.
- ${\rm M}_{\rm 0,2}$ momento para el que se produce fisura de ancho 0,2 mm.
- (2) Valor Vu calculado según el criterio establecido en el apartado 44.2.3.2.1.2 de la instrucción EHE-08
- (3) a 28 DÍAS. Para otra edad se multiplicará por el factor:

Edad	7 días	14 días	21 días	28 días	3 meses	6 meses	1 año	> 5 años
Rigidez	0,83	0,89	0,91	1,00	1,06	1,13	1,16	1,20
Mfisuración	0,78	0,86	0,96	1,00	1,10	1,17	1,22	1,27

^{***} b = (lb)forjado / (lb)placa

FABRICANTE


Nombre: PREFABRICADOS ARCON, S.L.

Dirección: CTRA. DE LA GRANJA DE LA COSTERA S/N

Localidad: 46800 XÀTIVA (Valencia)

TÉCNICO AUTOR DE LA MEMORIA Nombre: Sergio Monerris Muñoz Titulación: Ingeniero Técnico Industrial

Hoja 7 de 7

FLEXIÓN POSITIVA (por m)

TIPO DE	Mu	β***	Módulo resistente	,		M límite según clase de exposición (m·kN/m) (1)				Vu (kN/m)	Rasante (kN/m)
ILACA	(III KIV/III)		(cm ³ /m)	bruta El _b	ilsurada El _{fis}	Mo	M _o ′	M_{fis}	M _{0,2}	(2)	(KIN/III)
T-1 T-2 T-3 T-4 T-5 T-6 T-7 T-8	93,77 110,02 142,57 166,54 201,35 233,83 253,45 281,33	3,48	18974 19088 19290 19464 19730 19937 20079 20249	60,48 60,74 61,21 61,62 62,22 62,70 63,01 63,36	45,60 45,91 46,47 46,95 47,67 48,24 48,61 49,05	46,88 55,01 71,29 83,27 100,68 116,91 126,73 140,66	70,33 82,51 106,93 124,91 151,02 175,37 190,09 211,00	79,70 93,51 121,19 141,56 171,15 198,75 215,44 239,13	84,39 99,02 128,32 149,89 181,22 210,45 228,11 253,20	95,17 99,91 111,23 118,15 128,09 132,57 139,23 150,12	265,73
	T-1 T-2 T-3 T-4 T-5 T-6 T-7	T-1 93,77 T-2 110,02 T-3 142,57 T-4 166,54 T-5 201,35 T-6 233,83 T-7 253,45	T-1 93,77 T-2 110,02 T-3 142,57 T-4 166,54 T-5 201,35 T-6 233,83 T-7 253,45	TIPO DE PLACA (m·kN/m) β*** resistente W _{linf} (cm³/m) T-1 93,77 T-2 110,02 19088 T-3 142,57 T-4 166,54 T-5 201,35 T-6 233,83 T-7 253,45 3,48 resistente W _{linf} (cm³/m) 18974 19088 19290 19464 19730 19937 20079	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PLACA Mu (m·kN/m) β*** PLACA Mu (m·kN/m) β*** PLACA PLACA Mu (m·kN/m) β*** PLACA PLACA Mu (m·kN/m) β*** PLACA PLACA Mu (m·kN/m) Mu (m	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

FLEXIÓN NEGATIVA (por m)

(po)												
Refuerzo superior por nervio	M _u (m·kN/m)		M_{fis}	Rigidez (m²·kN/m)		M lín	nite servicio	según cla	V _u (kN/m) (2)		Daganta	
	Sección	Sección	(m·kN/m)	Bruta	fisurada E·I _{fis}			m·kN/m		T .	· · ·	Rasante (kN/m)
	Tipo	Macizada	()	E٠lه		I	II	III-IV	IIIc		Macizada	
4Ø10	30,02	30,08	37,10	59,67	3,41	15,01	22,52	25,52	27,02	23,22	42,15	
4Ø12	42,95	43,05	37,24	59,90	4,91	21,47	32,21	36,50	38,65	26,22	47,61	
6Ø10	44,84	44,98	37,26	59,94	5,12	22,42	33,63	38,11	40,35	26,58	48,25	
8Ø10	59,50	59,79	37,42	60,20	6,82	29,75	44,63	50,58	53,55	29,25	53,11	
6Ø12	63,99	64,29	37,48	60,28	7,37	31,99	47,99	54,39	57,59	30,02	54,50	
4Ø16	75,01	75,40	37,61	60,49	8,73	37,51	56,26	63,76	67,51	31,77	57,67	
8Ø12	84,91	85,34	37,71	60,66	9,83	42,45	63,68	72,17	76,42	33,04	59,98	265,73
10Ø12	105,52	106,19	37,95	61,04	12,28	52,76	79,14	89,69	94,97	35,59	64,61	200,70
6Ø16	111,31	112,19	38,02	61,17	13,10	55,66	83,49	94,62	100,18	36,36	66,01	
8Ø16	146,82	148,38	38,44	61,84	17,46	73,41	110,11	124,79	132,14	40,02	72,65	
10Ø16	181,70	183,96	38,86	62,52	21,83	90,85	136,28	154,45	163,53	43,11	78,26	
8Ø20	222,22	225,85	39,39	63,36	27,30	111,11	166,66	188,88	200,00	46,45	84,32	
10Ø20	272,65	278,61	40,04	64,41	34,12	136,32	204,49	231,75	245,38	50,03	90,83	

Los momentos y cortantes de las cargas mayoradas con los coeficientes empleados (para cargas permanentes y sobrecargas) deben ser mayores que los valores últimos.

NOTA: (1) Según clase de exposición, apertura máxima de fisura: Wkl = 0,2 mm Wkl la = 0,2 mm Wkl ll y IV = descompresión

- M₀ momento de descompresión de la fibra inferior de la sección,
- M_0 ' momento que produce tensión nula en la fibra de la sección situada a la profundidad de la armadura inferior.
- $M_{\rm fis}$ momento de apertura de fisura en la fibra más traccionada de la sección.
- ${\rm M}_{\rm 0,2}$ momento para el que se produce fisura de ancho 0,2 mm.
- (2) Valor Vu calculado según el criterio establecido en el apartado 44.2.3.2.1.2 de la instrucción EHE-08
- (3) a 28 DÍAS. Para otra edad se multiplicará por el factor:

Edad	7 días	14 días	21 días	28 días	3 meses	6 meses	1 año	> 5 años
Rigidez	0,83	0,89	0,91	1,00	1,06	1,13	1,16	1,20
Mfisuración	0,78	0,86	0,96	1,00	1,10	1,17	1,22	1,27

^{***} b = (lb)forjado / (lb)placa